Annals of Operations Research 26(1990)257-268 257

MINIMIZING THE SUM OF THE JOB COMPLETION TIMES IN THE
TWO-MACHINE FLOW SHOP BY LAGRANGIAN RELAXATION

S.L. van de VELDE
Centre for Mathematics and Computer Science, P.O Box 4079, NL-1009 AB Amsterdam,
The Netherlands

Abstract

A branch-and-bound algorithm is presented for the two-machine flow shop problem
with the objective of minimizing the sum of the job completion times. Lower bounds
and precedence constraints result from a Lagrangian relaxation of this problem. The
Lagrangian subproblem tumns out to be a linear ordering problem that is polynomially
solvable for appropriate choices of the Lagrangian multipliers. The best choice within
this class yields a lower bound that dominates previous bounds. In fact, the existing
bounds correspond to particular choices of the multipliers. Several dominance criteria are
given to restrict the search tree. Computational experiments show that the proposed
algorithm outperforms the previously best method.

Keywords

Flow shop scheduling, Lagrangian relaxation, linear ordering problem, branch-and-bound,
computational experience.

1. Introduction

An m-machine flow shop is described as follows. There are m machines, each
of which can handle at most one job at a time. There are n independent jobs,
each consisting of a chain of m operations. The Ahth operation of job i has
to be scheduled on machine /4 during a positive uninterrupted processing time
(h=1,...,m;i=1,...,n). Note that the jobs pass through the machines in the
same order. A schedule defines a job order for each machine.

The bulk of flow shop research in the last decades has been focused on the
minimization of the maximum of the job completion times, i.e. the length or makespan
of a schedule. However, Gupta and Dudek [9] pleaded that criteria in which the costs
of each job are reflected have a better economic interpretation than the makespan
objective has.

This paper deals with the minimization of the sum of the job completion times
in a two-machine flow shop. Following the notation of Graham et al. [8], we refer to
this problem as F2|| Zq. It is well known that for this problem it suffices to optimize
over all permutation schedules (Conway et al. [4]). A permuiation schedule is a
schedule in which every machine has the same job sequence. Ignall and Schrage [11]

© JC. Baltzer A.G., Scientific Publishing Company

258 S.L. van de Velde, Minimizing the sum of job completion times

were the first to study this problem. They presented a branch-and-bound scheme,
based on two lower bounds. The heuristics presented by Krone and Steiglitz [14] were
applied by Kohler and Steiglitz [13] in further developing and testing the Ignall and
Schrage algorithm. Garey et al. [7] proved the problem to be NP-hard in the strong
sense.

Szwarc [19] developed some properties for F || ZC} and identified a class of
well-solvable cases. A more elaborate treatment of well-solvable cases can be found
in Adiri and Amit [1]. Bansal [2] extended the lower bounds proposed by Ignall and
Schrage to the m-machine case.

We will develop a branch-and-bound procedure that uses lower bounds obtained
with Lagrangian relaxation techniques. Although the concept of Lagrangian relaxation
has shown its merits for many types of combinatorial optimization problems (see
Fisher [5] for a survey), its use in scheduling theory, outside the area of single-
machine problems with minsum criteria, is limited. Scheduling problems dealing with
multiple machines, and especially flow shop and job shop problems, seldom give way
to promising relaxations. Fisher et al. [6] confirm this observation in their
(computationally unsuccessful) attempt to apply the related technique of surrogate
relaxation to the notorious job shop scheduling problem. A notable exception is the
paper by Hariri and Potts [10] for the two-machine flow shop problem with the
objective of minimizing makespan subject to precedence constraints.

The organization of this paper is as follows. In section 2, we give a formulation
of F||ZC,, followed by a relaxation. The resulting subproblem is a linear ordering
problem that, although it is known to be NP-hard, is efficiently solvable for some
special situations. There appears to be a class of Lagrangian multipliers that converts
the subproblems into polynomially solvable linear ordering problems. The two Ignall
and Schrage lower bounds correspond to two particular choices within this class. It
is shown how the new lower bounds can be strengthened, and the last subsection is
concemed with the derivation of precedence constraints between jobs. Section 3
presents some dominance criteria to restrict the search tree. In section 4, there is a
complete description of the algorithm and a presentation of some computational

results. Section 5 concludes with a few remarks and some directions for possible
extensions.

2. The relaxation

Let p,; denote the processing time of job i (i=1,...,n) on machine A
(h = 1,2). The problem of minimizing the sum of the job completion times in a two-
machine flow shop, referred to as problem (P), can then be formulated as follows:
determine completion times C,; (h=1,2;i=1,...,n) that minimize

2, Ca P)
i=1

S.L. van de Velde, Minimizing the sum of job completion times 259

subject to

the precedence constraints between the operations of job i i = 1,...,n), (1)

the capacity constraints of machine 4 (h = 1, 2).)

Conditions (1) are formulated as

C2i2C1i+p2‘. Gi=1,...,n),

while in the sequel of this paper, condition (2) is assumed to be implicitly present.

A vector of multipliers A = (4,,..., 4) is introduced for dualizing condi-
tions (1). Lagrangian relaxation of those constraints yields the Lagrangian problem
(LR):

L(/'L)=mirli(liclﬁ(l-li)C2i+liP2i)- (LR)
=1

From standard Lagrangian theory [5], it is known that for any given A = 0, the value
L(A) provides a lower bound to (P). In order to prevent that L(A) becomes arbitrarily
small, we require 4 < 1.

In the Lagrangian problem, the operations of a job can be processed simul-
taneously. Hence, the primal problem decomposes into two single-machine problems
that are easily solved by Smith's [18] shortest weighted processing time rule. In
concreto, this implies that jobs are scheduled on machine 1 and machine 2 in order
of non-increasing ratios A /p,; and (1 - 4,)/pz, respectively.

However, the gist of our approach lies in imposing the restriction that (LR) is
solved over all permutation schedules. This is a redundant condition for the primal
problem, but it may increase the value L(4). We will choose the multiplier vector A
in such a way that solving (LR) over all permutation schedules can still be accomplished
in polynomial time.

To this end, we will first reformulate the problem of solving (LR) for a given
A over all permutation schedules as a linear ordering problem. The linear ordering
problem is the following: given an n X n matrix A = (a;) of weights, find a permutation
oof {1,...,n} that maximizes the sum

aj,
(i,j): 0()<o(j)

where o(i) denotes the position of element i in the sequence ¢. In our application,
we identify o(i) with the position of job i. Since in problem (LR) we have

Chi= 2, DPrj (3)
Jj:o(j)<o@)

it follows that

260 S.L. van de Velde, Minimizing the sum of job completion times

Zl(kicl,-+<1-—/1i)czi)=2[/1.- 2 pu)+z((1—m > sz)

=1\ j:o(j)soli) jro(j)s o)

n

Y (Aip1j+ (1= A)paj)
j=1

M=

it
—

n
=3 Y (Aiprj+(1=A)p2y).
i=1 ji <o)

Hence, solving (LR) over all permutation schedules is equivalent to finding a
permutation ¢ that maximizes

Y, (Aiprj+ (1= 2)paj). (4)
(,j): o0 < o(j)

Bergmans [3] and Pratt [17] showed, by an adjacent pairwise interchange argument,
that the linear ordering problem is polynomially solvable for two special cases; see
also Picard and Queyranne [16]. If the weights are in product form, i.e. a; = %Y
the linear ordering problem is solved by ordering according to non-increasing ratios
x,/y;. This ordering is exactly induced by Smith's rule. The linear ordering problem
can also efficiently be solved if the weights are in sum form, i.e. ;= x; + y;. In that
case, an optimal permutation is obtained by ordering the elements according to non-
increasing values X =, The choice zll. = ¢ for each i, for some constant ¢
(0 <c < 1), converts (4) into an even simpler polynomially solvable case of the linear
ordering problem: we obtain the form a; =Y solved by ordering according to non-
decreasing values b Hence, for those partlcular values of A, solving problem (LR)
over all permutation schedules amounts to scheduling the jobs in order of non-
decreasing values cp,; + a- c)p2 The values ¢ = 0 and ¢ = 1 render exactly the
Ignall and Schrage lower bounds and in fact these bounds result from applying
Smith's rule to each of the machines separately.

In the sequel of this paper, the notation (LR(c)) refers to problem (LR) with
li = ¢ for each i. L{c) denotes the optimal objective value of problem (LR(c)).

2.1. SOLVING THE LAGRANGIAN DUAL

Of course, we are particularly interested in solving the (restricted) Lagrangian
dual (D), that is, in finding that value of ¢ (0 < ¢ < 1) that maximizes L(c):

max mmz (Cai+e(Cri+pai—Ca)). (D)
0<c<1 i=1

S.L. van de Velde, Minimizing the sum of job completion times 261

We assert that L(c) is a continuous, concave and piecewise-linear function in ¢ (see
Fisher [5]). Hence, an optimal solution is achieved in a point of non-differentiability
or breakpoint. These breakpoints can be characterized in the following way.

Job i is called c-preferable to job j if cpy;+ (I —c)py<cp,; + (1 =0)p,,
which means that job i is scheduled before job j in the solution to problem (LR(c)
If job i is c-preferable to job j for all ¢ (0 < ¢ < 1), then job i is strongly preferable
to job j. For each pair of jobs (i, j) without a strong preference relation, a critical
value is defined as the value of c¢ for which both jobs are equally preferable, i.e.
cp,,+ (A -o)p, = cpy; + (1 - c)pzj. These critical values are precisely the points
of non-differentiability.

The procedure to solve (D) is the following. Find the O(n?) critical values and
sort them in non-decreasing order. From (D), one can tell for each critical value o
whether o0 + € or ¢ — ¢, with € > 0 and ¢ sufficiently small, is the direction of ascent.
In case o has no direction of ascent, then of course o is the breakpoint at which the
optimal solution is attained. So, the optimal breakpoint can be achieved by binary
search over all breakpoints. The Lagrangian dual is solved in O(n?log n) time. As
max, ., L(c) 2max{L(0), L(1)}, it produces a lower bound that dominates the
Ignall and Schrage lower bounds.

2.2. STRENGTHENING THE LOWER BOUND

Let ¢* be the value of ¢ that solves problem (D). Suppose now that the multiplier
vector A is perturbed in the ith component by a term A, i.e. lx =c + A,. Suppose
further that this perturbation does not change the processing order. Obviously, the
lower bound would be affected by the term

Ai(Cli + Py~ C2i)' ®)

Let g, = 4, ;py + (1= A, Py I A, were perturbed by A,, then the ith row in
the weight matnx A for the linear ordermg problem would become a;+ A, (pI Pz,)
forj=1,..., n. The issue now is to determine the range for A, such that the opumal
solution to the perturbed problem is the same as to (LR(c")). Recall that the choice
A, = c for each i implies for the solution of problem (LR(c)) that

a;>a; < o(i) > o()).

Hence, a sufficient condition to ensure that the optimal solution remains the same is
that foreach j (j=1,...,n, j # i) we have

a,2a,+A(p,-p,) it o@)> o)), ©)

a,<a.+A(p,-p,) i o() < o()). M

262 S.L. van de Velde, Minimizing the sum of job completion times

The next step is to compute for each j, j # i, the value 6‘.1. of A, such that the values
a; and a; + A(py- Pz,-) coincide, if such a value exists. From this, we obtain

8= (@ = apl(py;—py) i py#py.

Defining A = min; {di,-|d,-,- 20 and p, # Py } and A = max, {d‘.jl d;<0 and
p;# pzj}, respectively, we conclude that as long as li is perturbed by A, with
A7 < A < A}, the optimal solution to (LR(c")) is also optimal to the perturbed
problem. Therefore, the current lower bound can be improved by maximizing (5)
subject to and A7 < A, < AY and 0 < 4, + A, < 1. Hence, the Lagrangian weights are
perturbed in the following way:

(@ A « min{c" + A}, 1} if C,,+p,>C,,
(®) A, « max{c + A, 0} if C,+p, <C,.

This analysis can consecutively be performed for each job i and takes O(n?) time
altogether. It is important to note that the ultimate strength of the lower bound
depends on the order in which the multipliers have been adjusted.

2.3. PRECEDENCE CONSTRAINTS

A job i is said to have precedence to job j, denoted by i — j, if there is an
optimal solution in which job i precedes job j. The technique of deriving precedence
constraints is based upon the following concept. Let (LR(c, i — j)) denote problem
(LR(¢)) to which we added the constraint i — j, while job j is c-preferable
to job i. Clearly, we have L(c,i — j) > L(c). If L(c, i — j) exceeds a known upper
bound, then obviously there is an optimal solution to (P) in which j — i. We only
have to deal with the question whether (LR(c,i — j)) is polynomially solvable.
Fortunately, this is the case. A single-machine result from Monma and Sidney [15]
for objective functions that possess the adjacent pairwise interchange property applies
to problem (LR(c, i — j)). This result clears the way for solving (LR(c, i — j)) in
a quite straightforward way.

THEOREM 1

For problem (LR(c, { — j)) with job j c-preferable to job i, there is an optimal
permutation with job j immediately succeeding job i.

Again, this can be demonstrated by an interchange argument.

By use of theorem 1, an optimal permutation for (LR(c, i — j)) can be found
in the following way. Start by scheduling all jobs as in the solution of problem
(LR(c)) and remove the jobs i and j from this sequence. Call this permutation 7. The

S.L. van de Velde, Minimizing the sum of job completion times 263

module {i,j} is then inserted just before the first job ke z for which
2(cp1k + (1 - op,,) > c(p1 + pl‘,) + (1 - c)(p, + Pz) If no such job exists, then
{i,j} is scheduled last. This condition stems from evaluatmg the objective values for
(LR(c)) for the sequences ijk and kij, respectively. The lower bound resulting from
(LR(c, i = j)) can be strengthened in the same spirit as was outlined in section 2.2.

3. Dominance criteria

A node at level k of the branch-and-bound procedure corresponds to an initial
partial sequence x in which k£ jobs have been put in the first k positions. For each
node at level &, at most n — k descendant nodes are created, one for every job without
unscheduled predecessors. Let C (7) be the completion time of the last job in
sequence 7 on machine k. The sum of the job completion times on machine 2 of the
jobs in & is denoted by TC(x). Then there is no need to branch from a node having
m as an initial sequence if there is permutation 7~ of the jobs in 7, 7 # &, that satisfies
the following conditions:

TC(n") < TC(®), ®

Cy(m") < max{C,(n), C\(x) + min,_ _p }. ©)

In that case, we say that the sequence « is dominated by n°". Condition (9) ensures
that the unscheduled jobs can start on machine 2 at least as soon with 7" as with 7
as initial sequence. Of course, finding out whether a given permutation x is dominated
or not is as difficult as the original problem. A dominance rule gives an easy to check
sufficient condition for the existence of dominance.

The following three rules should be checked as soon as we are about to add
a new job i to the current initial sequence. The dynamic programming dominance
criterion is probably the most obvious one: a node that corresponds with the sequence
m = pji can be eliminated if the sequence 7 is dominated by the sequence &~ = pij.
Here, p is a subsequence of jobs.

The second rule reschedules the jobs in 7 = pi into & according to Johnson's
rule [12] for minimizing maximum completion time in the two-machine flow
shop. Then certainly, condition (9) is satisfied. It is not difficult to find out whether
TC(n") < TC(x). Note that if job i appears before job j in 7, while we have derived
in section 2.3 that j — i, we can still eliminate the node associated with x if conditions
(8) and (9) are satisfied.

The third rule looks for a job j€ m such that p < py; and p, < p,.
Thus, © can be written as x = p jp,i, where p and p, are subsequences
If welet n° = p, ip, j, then condition (8) for the existence of dominance of 7 by T
is satisfied. ThlS is stated in the following lemma.

264 S.L. van de Velde, Minimizing the sum of job completion times

LEMMA
If we have p, < py; and p, < p,., then TC(p, ip,j) < TC(p, jp,i).
Proof
We have C,(p,i) = C,(p,J) + py;—py; < C,(p,j); this implies
C,(p0) S Cy(pyJ) + pyy— Py (10)

Furthel"more, it holds that C (p, ip k) =C (p,jp, k) + p,, —py; < C.(p,jp k) for
every job k€ p,, and hence that

C,(pip k) < Cy)p,jp. k) for every k€ p,, (11)

where p, denotes the jobs of subsequence p, that are scheduled before k. In addition,

we have C (p, ip,j)=C (p, jp,i). Because of this and since C,(p, ip,) < C,(p,jp,),
we have

C (P, ip,J) < Cp jp i) + Py = Py (12)

Totalling all completion times with the help of expressions (10), (11), and (12) yields
the desired result. O

As can be seen from (12), there is no guarantee beforehand that condition (9)
is satisfied as well. It has yet to be verified if this is the case; only thenis m=p, jp, i
dominated by 7" = p, ip,j. We may fathom the node associated with = even if some
of the precedence relations obtained in section 2.3 are violated in the sequence 7.
In that case, we have TC(p, jp,ip,) 2 TC(p,ip,jp,) > UB, where p, jp, ip, and
p, ip,jp, are complete schedules.

Conway et al. [4] claim that there is an optimal solution in which job i precedes
job jif p,,<p . andp, < Py As can be seen from expression (12), this cannot be
established by the interchange argument used in the proof of the lemma. Szwarc [19]
shows the claim to be faulty by giving a counterexample.

Under a more stringent condition, however, we deduce the following result,
which can be used to generate a priori precedence constraints.

THEOREM 2
If for jobs i and j it holds that p,, = p,; and p,,; < p,;, then there is an optimal
permutation in which job i precedes job j.

Proof

We have to show that under these conditions any subsequence of the type
p,ip,Jj is dominated by p, jp,i in terms of conditions (8) and (9). Condition (8) is

S.L. van de Velde, Minimizing the sum of job completion times 265

satisfied, as can be seen from the lemma. Since P,; = p,;, expression (12) reduces to

C20p,ip, J) < C(p, jp,i), which implies that C,(z") < C,(); hence, condition (9)
1S satisfied too. 0

. Of course, if for jobs i and j we have P, = p,; and p,. = p, ., we allow either
¢t —> jorj— iinorder to avoid the inconsistency to have both i — jand j — i. Note
that the combination of the precedence relations from theorem 2 and the precedence
relations generated as described in section 2.3 cannot result in inconsistencies.

4. The algorithm

Before starting the actual branch-and-bound procedure, we do some preprocessing
in order to find an upper bound, to derive precedence constraints, and to accelerate
the calculations in a node of the tree. As far as an upper bound is concerned, we begin
with a random permutation and we try to improve its sum of the job completion times
by local interchanges. In this way, we obtain some upper bound, say, UB. It tumned
out to be a robust procedure that provided us with satisfactory initial upper bounds.

In addition, we approximate the search over the O(n?) points, as described in
section 2.1, by a search over 21 points. Therefore, we store 21 permutations that solve
the problems (LR(c)) with ¢ = x/20, x = 0, . . ., 20, respectively. This search works
sufficiently well due to the flatness of (LR(c)) around the-optimum. The storage
implies a significant reduction in lower bound calculation time, since we have to sort
the jobs for each of these values of ¢ only in the preprocessing phase; it then takes
only linear time to compute (L(c)) in a node of the tree.

In a similar fashion, we store the maximum perturbation values A’ and A7, for
eachjobi(i=1,...,n), which are computed as described in section 2.2. Actually,
these values depend on the set of unscheduled jobs and should be computed in each
node of the tree. Although they are likely to increase if we go down the search tree,
the loss in strength was more than compensated for by the reduction in computation
time. The storage reduces the cost of lower bound strengthening in a node of the tree
from O(n?) to O(n) time.

In order to derive precedence constraints, the best value of ¢ with ¢ = x/20,
x =0,...,20, is achieved by binary search. The completion times on both machines
can easily be calculated from (3), taking linear time, albeit we can alternatively put
C,, « C,, + min <jsnPyj foreachjobi (i=1,.. .: n), since the secgnd machine is
surely idle until min, _,_ p,.. For problem (LR(c")), we try to derive precedenc;e
constraints as described in section 2.3. For that purpose, we introduce an n X n matrx
X with elements x; = L(c",i—j)and x,; = 0. It is necessary 10 store this matrix, since
new precedence constraints can possibly be derived as soon as we find a better upper
bound.

The Ignall and Schrage algorithm follows a best bound strategy. For each of
the new nodes, the corresponding lower bound is calculated and, if this lpwer boufld
is smaller than the current upper bound, this new node is inserted in a list of active

266 S.L. van de Velde, Minimizing the sum of job completion times

nodes. That list is sorted in order of non-decreasing lower bounds. The node at the
top of this list is chosen to branch from. A significant advantage of such a list is that
it facilitates dominance checking. However, in the worst case, the size of this list is
exponential in the number of jobs. Computational experiments made it clear to us that
this dominance checking was only advantageous for instances with » up to 10.

‘ In contrast to the Ignall and Schrage procedure, we use an active node strategy.
This means that we generate descendant nodes, of which there are at most n — k, for
only one non-fathomed node at level k. These descendant nodes are stored in a
separate list and sorted according to a branching rule. We then branch from the node
at the top of this list. Such a procedure requires only O(n?) space, since at each level
k we have a list of at most n — k jobs. The only thing that remains to be explained
is the branching rule. The new nodes that add some job j without unscheduled
predecessors to an initial sequence & are sorted in non-decreasing order of E‘.e (i
This sum is supposed to reflect some notion of "costs” if we schedule job j before
the other unscheduled jobs.

Table 1
Computational results on a VAX-780 computer.
Ignall and Schrage Proposed
algorithm algorithm

Max number of Total number of Time Total number of Time

Data set active nodes nodes [sec] nodes [sec]
10.1 5 53 0.86 9 1.54
10.2 13 84 0.88 10 1.30
10.3 18 152 0.96 14 1.52
104 117 728 3.10 57 1.86
10.5 135 957 3.94 169 2.70
15.1 1462 13718 92.99 693 9.48
15.2 2097 11156 116.86 388 7.44
153 1721 17712 142.36 603 9.66
15.4 676 2946 18.58 169 5.04
15.5 4280 35442 958.74 380 6.02
20.1 5213 (98.81%) 336.72 963 18.98
20.2 6411 (95.28%) 281.02 9235 95.45
20.3 5266 (97.12%) 182.19 1282 21.66
204 8909 (90.43%) 489.98 8846 102.61
20.5 8184 (96.72%) 422.38 4913 56.28

Both algorithms were coded in C, implemented on a VAX-780 computer, and
tested on problems with 10, 15 and 20 jobs. The processing times for each job were
taken from the uniform distribution [1, 10], as Kohler and Steiglitz [13] did in carrying
out their experiments. Table 1 presents the results. The entries in the column "maximum

§.L. van de Velde, Minimizing the sum of job completion times 267

number of active nodes" give an indication of the Space required by the Ignall and
Schrage algorithm. Data inspection shows that the new algorithm outperforms the
Ignfiﬂ and Schrage procedure, although in the case n = 10 it is sometimes slower. The
main reason for this lies in the preprocessing phase. For instance, the derivation of
precedence constraints takes O(n®) time, and is consequently relatively expensive for
smaller instances.

As to the Ignall and Schrage algorithm with 20 jobs, computation was terminated
after 10 000 nodes. An entry within brackets represents the ratio in percentage upon

gcormi(xilation between the lower bound of the first node in the list and the current upper
und.

5. Conclusions

Although the presented approach shows a significant improvement with respect
to the Ignall and Schrage algorithm, the F2 || £C; problem remains difficult to solve.
From additional experiments, it appeared that major difficulties are encountered for
instances beyond 25 jobs. Most of the results obtained here carry over to the more
general F2 || Xw,C, problem. In this problem, each job i has got some weight w,
attached to it, expressing its importance relative to other jobs. Performing an analysi§
along the lines of section 2, one can find out that the resulting linear ordering problem
can be efficiently solved in the case that for each i, A, = ¢, with ¢ = 0, w, or w/2.

For this last choice of A, the weights of the linear ordering problem are in product
form.

Acknowledgements

The author wishes to express his thanks to Han Hoogeveen, Jan Karel Lenstra,
Maurice Queyranne, and to two anonymous referees whose suggestions led to a
significant improvement of an earlier version of the paper.

References

[1] I. Adiri and N. Amit, Openshop and flowshop scheduling to minimize sum of completion times,
Comput. Oper. Res. 11(1984)275-284.

[2] S.P. Bansal, Minimizing the sum of completion times of n jobs over m machines in a flowshop —
a branch and bound approach, AIIE Trans. 9(1977)306-311.

[3] P.P. Bergmans, Minimizing expected travel time on geometrical patterns by optimal probability
rearrangements, Information and Control 20(1972)331-350.

[4] R.W. Conway, W.L. Maxwell and L.W. Miller, Theory of Scheduling (Addison-Wesley, Reading,
MA, 1967).

[5] M.L. Fisher, The Lagrangian relaxation method for solving integer programming problems, Manag.
Sci. 27(1981)1-18.

[6] M.L. Fisher, B.J. Lageweg, J.K. Lenstra and A.H.G. Rinnooy Kan, Surrogate duality relaxation for
job shop scheduling, Discr. Appl. Math. 5(1983)65--75.

268 S.L. van de Velde, Minimizing the sum of job completion times

[71 M.R. Garey, D.S. Johnson and R. Sethi, The complexity of flowshop and jobshop scheduling, Math.
Oper. Res. (1976)117-129.

[8] R.L.Graham, E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan, Optimization and approximation
in deterministic sequencing and scheduling: A survey, Ann. Discr. Math. 5(1979)287-326.

[9]1 JIN.D. Gupta and R.A. Dudek, Optimality criteria for flowshop schedules, AIIE Trans. 3(1971)
199-205.

[10] A.M.A. Hariri and C.N. Potts, Algorithms for two-machine flow-shop sequencing with precedence
constraints, Eur. J. Oper. Res. 17(1984)238-248.

[11] E. Ignall and L. Schrage, Application of the branch and bound technique for some flowshop
scheduling problems, Oper. Res. 13(1965)400-412.

[12] S.M. Johnson, Optimal two- and three-stage production schedules with setup times included, Naval
Res. Logist. Quart. 1(1954)61-68.

[13] W.H. Kohler and K. Steiglitz, Exact, approximate and guaranteed accuracy algorithms for the flow-
shop problem n/2/F/F, 1. Assoc. Comput. Mach. 22(1975)106—114.

[14] M.J. Krone and K. Steiglitz, Heuristic programming solution of a flowshop-scheduling problem,
Oper. Res. 22(1974)629-638.

[15] C.L. Monma and J.B. Sidney, Sequencing with series-parallel precedence constraints, Math. Oper.
Res. 3(1979)215-224.

[16] J.-C. Picard and M. Queyranne, On the one-dimensional space allocation problem, Oper. Res.
29(1982)371-391.

[17] V.R. Pratt, An O(n log n) algorithm to distribute n records in a sequential access file, in: Complexity
of Computer and Computations, ed. R.E. Miller and J.W. Thatcher (Plenum, New York, 1972),
pp. 111-118.

[18] W.E. Smith, Various optimizers for single-stage production, Naval Res. Logists. Quart. 3(1956)59-66.

[19] W. Szwarc, The flow-shop problem with mean completion time criterion, AIIE Trans. 15(1983)
172-176.

